Cristina Ferrándiz is currently project leader of the Developmental Genetics of Carpel and Fruit Morphogenesis Lab at IBMCP (CSIC) since 2002. She has worked for almost 20 years on different aspects of Plant Developmental Genetics, focusing on the genetics of carpel and fruit development in several plant species including Arabidopsis and crop legumes. Her work aims to better understand the genetic and molecular interactions leading to coordinated patterning of the fruit in model systems as well as the functional conservation of these networks in different crop and non-crop species. Her major contributions in this field have been the characterization of several key transcription factors required for dehiscence in Arabidopsis and other crops; she also has identified the NGATHA factors, which are essential for the formation of the stigma and style both in Arabidopsis and other species, and to control the distribution of auxin during development gynoecium regulating the synthesis and transport. It has also contributed to develop non-hierarchical genetic models that explain gynoecium morphogenesis through the formation of protein complexes involving members of several families of transcription factors and how variations in these networks affect the morphological evolution. Recently, her work has also focused in the regulation of the life span in monocarpic species, which are those with a single reproductive cycle in their lives, and that after producing a certain number of fruits enter senescence and die: the work of the lab has uncovered a novel genetic mechanism that controls the length of the reproductive phase and hence fruit production and is currently is applying this knowledge to develop biotechnolofical strategies to increase yield in several crops.

C. Ferrandiz has wide experience in developmental genetics, molecular and cell biology techniques. C. Ferrandiz has lead 9 Spanish research projects and has participated in research at EU level, in a FP6 EU Integrated Project (GLIP) and has also been WP leader in 3 FP7 projects (EVO-CODE, FRUITLOOK and LEGATO); currently participates in two H2020 projects (EXPOSEED and Newcotiana). She has co-authored 50 publications in SCI Journals on plant development, in some of the most prestigious scientific journals in Multidisciplinary Science  (Science, Nature Comm, Curr Biol) and in the areas of Plant Biology, Development and Biochemistry (such as Plant Cell, Plant Journal, Plant Phys, Development, Ann Rev Biochem, etc) with more than 3000 citations (excluding self-citations); she has a H index of 25.

Her group is well positioned in the international scientific community, and enjoys good visibility. As proof of this, in the last 10 years he has taught >20 invited lectures at national and international conferences and >25 invited seminars in various institutions, among which are some of prestige as the John Innes Center (UK), the Max Planck (Cologne, Germany) or the ENS de Lyon (France).

Abstract

Las plantas monocárpicas, que incluyen a Arabidopsis y un gran número de cultivos, florecen y producen frutos solo una vez en sus vidas, es decir, tienen un único ciclo reproductivo. El inicio de este ciclo está determinado por la transición de la floración, y el final, y por lo tanto la duración de su vida, está determinado por una parada coordinada de la actividad de todos los meristemos y la senescencia de los tejidos vegetativos, un fenómeno con valor adaptativo, ya que se interpreta como una optimización de los recursos para la producción de semillas. En Arabidopsis y muchas otras plantas monocárpicas tenemos una gran cantidad de información sobre el inicio de la floración, pero, en contraste, se sabe muy poco acerca del cese de la floración, es decir, se desconocen en gran medida las bases moleculares y los mecanismos de señalización que controlan la parada proliferativa de los meristemos (GPA, del inglés Global Proliferative Arrest).                       

Nuestro grupo ha descubierto recientemente una nueva ruta genética que regula el final de la floración en Arabidopsis en respuesta a factores dependientes de la edad y que parece estar conservada en diferentes especies, la ruta FRUITFULL-APETALA2 (FUL-AP2). Esta ruta actúa en paralelo con señales sistémicas de naturaleza desconocida procedentes de las semillas en desarrollo, pero aún no se ha descubierto si existe interconexión entre ellas y cómo se implementa. Para abordar estas preguntas, así como para descubrir nuevos factores involucrados en la regulación del GPA, actuando en paralelo o aguas abajo del módulo FUL-AP2, estamos utilizando diferentes enfoques genéticos y moleculares, que presentaremos en esta charla. También se discutirán las aplicaciones biotecnológicas de nuestra investigación y los primeros ensayos que muestran su potencial para aumentar la producción de los cultivos.